Unveiling hidden migration: Analysis of 6 million phones around a cyclone in Bangladesh

David J. Wrathall PhD, Assistant Professor Oregon State University College of Earth, Ocean and Atmospheric Sciences

Panel survey data

migration research

- not planned around climate change impact;
- out-migration;
- doesn't account for in-migration, or net migration!

Mobile network data

Study area: Barisal and Chittagong Divisions, Bangladesh

Cyclone Mahasen (16 May 2013): Forecasted versus Actual Landfall

An aside: Short-term patterns of mobility:

Red = positive flows compared to normal

Blue = negative flows compared to normal

What is "normal" mobility? Anomaly detection

Lu, X., **D. Wrathall,** P. Roe Sundsøy, M. Nadiruzzaman, E. Wetter, A. Iqbal, T. Qureshi, A. Tatem, G. Canright, K. Engø-Monsen, L. Bengtsson (2016) Detecting climate adaptation from anomalies in mobile network data: analysis of Cyclone Mahasen in Bangladesh. *Climatic Change*

Long-term patterns of migration:

Net migration:

[Published] 0.96 correlation between net flows in 2013 (the storm year) to flows in 2012 (a non-storm year).

IT WAS THE MONSOON!

Monthly netflow for each district, 2012

Conclusions

Climate change will amplify a very predictable pattern. We need larger-scale, long-term, spatiotemporally resolved data, including unaffected areas.

